Generation of safe and therapeutically effective human induced pluripotent stem cell‐derived hepatocyte‐like cells for regenerative medicine

نویسندگان

  • Kazuo Takayama
  • Naoki Akita
  • Natsumi Mimura
  • Rina Akahira
  • Yukimasa Taniguchi
  • Makoto Ikeda
  • Fuminori Sakurai
  • Osamu Ohara
  • Tomohiro Morio
  • Kiyotoshi Sekiguchi
  • Hiroyuki Mizuguchi
چکیده

Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells are expected to be applied for regenerative medicine. In this study, we attempted to generate safe and therapeutically effective human iPS-HLCs for hepatocyte transplantation. First, human iPS-HLCs were generated from a human leukocyte antigen-homozygous donor on the assumption that the allogenic transplantation might be carried out. Highly efficient hepatocyte differentiation was performed under a feeder-free condition using human recombinant laminin 111, laminin 511, and type IV collagen. The percentage of asialoglycoprotein receptor 1-positive cells was greater than 80%, while the percentage of residual undifferentiated cells was approximately 0.003%. In addition, no teratoma formation was observed even at 16 weeks after human iPS-HLC transplantation. Furthermore, harmful genetic somatic single-nucleotide substitutions were not observed during the hepatocyte differentiation process. We also developed a cryopreservation protocol for hepatoblast-like cells without negatively affecting their hepatocyte differentiation potential by programming the freezing temperature. To evaluate the therapeutic potential of human iPS-HLCs, these cells (1 × 106 cells/mouse) were intrasplenically transplanted into acute liver injury mice treated with 3 mL/kg CCl4 only once and chronic liver injury mice treated with 0.6 mL/kg CCl4 twice weekly for 8 weeks. By human iPS-HLC transplantation, the survival rate of the acute liver injury mice was significantly increased and the liver fibrosis level of chronic liver injury mice was significantly decreased. Conclusion: We were able to generate safe and therapeutically effective human iPS-HLCs for hepatocyte transplantation. (Hepatology Communications 2017;1:1058-1069).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

Development of Simple Protocol for Generation of Functionally Active Hepatocyte-like Cells from Human Adipose Tissue-derived Stem Cells

Background and Aims: Human adipose tissue-derived stem cells (hASCs) are considered as an attractive source of regenerative stem cells, mainly because of their higher proliferation rate, more accessibility and hepatocyte like properties as compared to mesenchymal stem cells isolated from other tissues. Numerous studies have described the beneficial use of adipose tissue-derived stem cells for g...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2017